class: center, middle, inverse, title-slide .title[ # The Whiz and Viz Bang of Data ] .subtitle[ ## The Basics of Visualizaiton and Modeling (part deux) ] .author[ ### Dr. Christopher Kenaley ] .institute[ ### Boston College ] .date[ ### 2025/9/17 ] --- class: inverse, top # In class today <!-- qAdd icon library --> <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.14.0/css/all.min.css"> .pull-left[ Today we'll .... - More on trees. - Trees as input in models. - Questions/Answers Module 3 project. ] .pull-right[  ] --- class: inverse, top # Trees: hard problems .pull-left[ Estimating relationships/Making trees is hard!! For 30 species . . . `\(5 \cdot 10^{38}\)` possible unique topologies - More solutions/topologies than stars in universe. - NP complete: a class of problems that are the most computationally difficult in the world. ] .pull-right[ <!-- --> ] --- class: inverse, top # Trees: storing tree information .pull-left[ Even hard to represent tree information Newick format: "(Bovine:0.69395,((Gibbon: 0.36079,((Orang: 0.33636,(Gorilla:0.17147,(Chimp: 0.19268, Human:0.11927): 0.08386): 0.06124) :0.15057): 0.54939),Mouse: 1.21460));"  ] .pull-right[ ``` r tre <- "(Bovine:0.69395,((Gibbon:0.36079,((Orang:0.33636,(Gorilla:0.17147,(Chimp:0.19268, Human:0.11927):0.08386):0.06124):0.15057):0.54939),Mouse:1.21460)); " phy <- read.tree(text=tre) plot(phy) ``` <!-- --> ] --- class: inverse, top <!-- slide 1 --> ### Brownian motion <!-- --> --- class: inverse, top <!-- slide 1 --> ### Brownian motion <center> `\(V_{ij}= \gamma \times t_a\)` Variation-covariation matrix, e.g. `ape::corBrownian()` <img src="https://lukejharmon.github.io/pcm/images/figure3-5.jpeg" alt="drawing" width="500"/>